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A B S T R A C T

Drying-rewetting cycles can affect ecosystem functioning, but little is known about how the interaction between
frequency and intensity of drying-rewetting cycles affects greenhouse gas emissions from plant-soil systems. We
assembled microcosms initially each having two vegetative individuals (ramets) of a clonal, wetland plant
Hydrocotyle vulgaris, and subjected them to three frequencies (6, 9 and 18 cycles with 9, 6 and 3 days per cycle)
crossed with three intensities (adding 200, 400 and 600 ml water per cycle) of drying-rewetting cycles for
54 days. Increasing frequency of drying-rewetting cycles significantly increased growth and net photosynthesis
rate of H. vulgaris under the lowest intensity of drying-rewetting cycles, but decreased them or had no effect
under the two higher intensities. Increasing drying-rewetting frequency significantly increased CO2 emission
under the lowest intensity and decreased it under the highest intensity, whereas no effect was found under the
intermediate intensity. CO2 emission was positively related to growth of H. vulgaris. Under the lowest intensity
CH4 emission was not significantly affected by frequency, but under the two higher intensities it was the highest
in the highest frequency. Under the lowest intensity N2O emission was the highest in the highest frequency, but
it was not affected by frequency under the two higher intensities. Therefore, frequency and intensity of drying-
rewetting cycles can interact to affect greenhouse gas emissions from plant-soil systems. Prolonged drought (low
frequency of precipitation) can decrease CO2 emission under a lower amount of precipitation, but promote it
under a higher amount of precipitation.

1. Introduction

Global climate change is predicted to alter patterns of precipitation
and increase frequencies of extreme climate events such as drought and
flood (IPCC, 2013; Reichstein et al., 2013). As a result, surface soils will
undergo more frequent drying-rewetting cycles (Seneviratne et al.,
2010). Changes in these unprecedented drying-rewetting cycles may
greatly impact plant growth, population dynamics, community struc-
ture and ecosystem function (Estop-Aragones and Blodau, 2012; Niu
et al., 2014; Zeppel et al., 2014; Wilcox et al., 2015; Estop-Aragones
et al., 2016).

Frequency and intensity of drying-rewetting cycles are two im-
portant determinants of the effects of drying-rewetting cycles on eco-
system functioning (Knapp et al., 2002; Ciais et al., 2005; Breda et al.,
2006; Schwalm et al., 2010; Shi et al., 2014). Reducing frequency of
larger rainfall events, for instance, reduced aboveground net primary
productivity of grassland ecosystems, but increased soil CO2 flux
(Knapp et al., 2002). Altering frequency of drying-rewetting cycles also

changed the magnitude of greenhouse gas emissions by affecting plant
biomass and rhizodeposit quantity of crops (Zhu and Cheng, 2013).
Moreover, soil drying frequency induced by plant transpiration rate
could impact plant growth and rhizodeposit quantity, which may fur-
ther affect rhizosphere priming and responses of soil organic matter
decomposition to drying-rewetting cycles (Zhu and Cheng, 2013). In
wetlands, changing frequency of drying-rewetting cycles may also in-
crease plant-soil respiration and greenhouse gas emissions by im-
proving soil aerate function (Wang et al., 2009; Gao et al., 2016;
Maucieri et al., 2017a). However, few studies have tested effects of
frequency of drying-rewetting cycles on greenhouse gas emissions from
plant-soil systems in wetlands (Niu et al., 2014; Liang et al., 2016).

Changes in intensity of drying-rewetting cycles can also alter eco-
system functioning (Ciais et al., 2005; Breda et al., 2006; Schwalm
et al., 2010; Shi et al., 2014; Sun et al., 2016). In grassland ecosystems,
vegetative productivity generally increased with rainfall intensity
(Huxman et al., 2004; Shi et al., 2014; Zhang et al., 2017). In temperate
deciduous Beech and northern Mediterranean forest ecosystems, severe
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drought events during drying-rewetting cycles decreased their primary
productivity, canopy conductance and ecosystem respiration (Ciais
et al., 2005). Drying-rewetting cycles affect stomatal conductance, leaf
area and plant respiration by altering soil moistures in temperate forest
ecosystems (Breda et al., 2006). Schwalm et al. (2010) found that global
ecosystem respiration was sensitive to a drought event by analyzing
observational data from a global network of eddy flux towers, and gross
ecosystem productivity was 50% more sensitive to a drought event than
ecosystem respiration (Schwalm et al., 2010).

Frequency and intensity of drying-rewetting cycles may interact to
affect ecosystem functioning (Niu et al., 2014; Estop-Aragones et al.,
2016). Under low to intermediate level of intensity of drying-rewetting
cycles, high frequency may be more important because high frequency
may maintain soil water content and facilitate plant growth. By con-
trast, under a high level of intensity, high frequency may be of little
importance because redundant soil water is maintained, which may
inhibit plant growth, change microbial composition and activity and
thus inhibit CO2 emission and promote CH4 emission due to soil sa-
turation (Gao et al., 2016; Zhang et al., 2017). So far, however, little is
known about the interactive effect of frequency and intensity of drying-
rewetting cycles on greenhouse gas emissions from plant-soil systems.

To test how patterns of drying-rewetting cycles affects greenhouse
gas emissions from plant-soil systems, we artificially assembled mi-
crocosms with a model plant Hydrocotyle vulgaris L. (Araliaceae; Dong
et al., 2013, 2015). H. vulgaris is clonal perennial herb originating from
Europe where it is commonly distributed in moist habitats (Murphy
et al., 1990). This species was introduced to China as an ornamental
aquatic plant, but has been widely naturalized (Miao et al., 2011). H.
vulgaris can reproduce quickly by producing creeping stems along
which each node can root and form a leaf and an axillary bud that will
develop into a new creeping stem (Dong et al., 2013, 2015). Due to such
vigorous clonal growth, populations of H. vulgaris expand quickly so
that in some wetlands in China H. vulgaris has become a problem weed,
blocking rivers and canals and replacing native species (Miao et al.,
2011).

We subjected the H. vulgaris microcosms to three frequencies (6, 9
and 18 cycles with 9, 6 and 3 days per cycle) and three intensities
(adding 200, 400 and 600 ml water per cycle) of drying-rewetting cy-
cles for 54 days. We aimed to test the following two hypotheses: (1)
increasing intensity of water supply increases growth of H. vulgaris, but
this effect is altered by frequency of drying-rewetting cycles; (2) in-
tensity and frequency of drying-rewetting cycles interact to affect
greenhouse gas emissions from the microcosms.

2. Materials and methods

2.1. Experimental microcosm set-up

Plants of H. vulgaris were collected from Xixi wetland in Hangzhou,
Zhejiang Province, China, and propagated vegetatively in a greenhouse
at Forest Science Co. Ltd. of Beijing Forestry University in Beijing. We
selected 100 similar-sized vegetative individuals (ramets) of H. vulgaris,
and each ramet had a node, a leaf and a few roots. Ten of them were
randomly selected and dried to measure initial dry mass
(0.13 ± 0.01 g, mean ± s.e.). The remaining 90 ramets were grown
in 45 pots (16 cm in diameter and 20 cm in depth) filled with an even
mixture of sand and commercial compost (Meishimei Bio-Tech Co. Ltd.,
Beijing, China) at an 1:1 volume ratio. The sand-compost mixture
contained 80 mg C g−1, 4.75 mg total N g−1 and 2.83 mg total P g −1.
The soil used was within the broad range of the wetland soil in nature,
which could also ensure that plants grew well during the experiment.
Each pot was planted with two ramets of H. vulgaris.

2.2. Experimental design

The experiment was a factorial design with three levels of water

supply intensity (low, medium and high) crossed with three levels of
water supply frequency (low, medium and high) of drying-rewetting
cycles. For low, medium and high water supply intensity, we added
200, 400 and 600 ml water, respectively, to the pot per drying-rewet-
ting cycle. For low, medium and high water supply frequency, there
were 6, 9 and 18 drying-rewetting cycles during the experiment, with 9,
6 and 3 days per cycle, respectively. The amount of 200 ml water every
three days corresponded approximately to the rate of supply of the
annual mean precipitation (1400 mm) in Hangzhou where H. vulgaris
was collected (Wu et al., 2012). There were five replicates (pots) for
each treatment. There was no water above the soil surface in any fre-
quency in the low intensity treatments, about 2 cm above the soil sur-
face immediately after water was added each time in the high frequency
and high intensity treatment, and about 0.5 to 1.5 cm above the soil
surface immediately after water was added each time in all other
treatments. The water level changed with time and there was no water
above the soil surface 2–3 days later after water was added each time.

The experiment started on 10 July and ended on 2 September 2015,
lasting 54 days. It was conducted in the same greenhouse where H.
vulgaris was cultivated. During the experiment, the air temperature was
27–36 °C and the relative humidity 40–60%. The photosynthetically
active radiation measured at the plant level at noon was
300–500 mmol photons m−2 s−1. The containers were randomly re-
positioned three times during the experiment to avoid potential effect
of acclimatization in microenvironments.

2.3. Measurements

We measured emissions of CO2, CH4 and N2O from the microcosms
(pots with soil and ramets) between 09:00 to 11:00 AM every 9 days
using static closed chambers (15.8 cm in inner diameter and 50 cm in
inner height) made of opaque PVC. The chambers were each installed
with a small fan for air circulation. For measurements, the chambers
first enclosed the microcosms and were sealed for 60 min, and green-
house gas emissions from the plant-soil systems were then captured.

Headspace samples (40 ml) were taken at 0, 30 and 60 min with
syringe and were analyzed within 24 h for CO2, CH4 and N2O con-
centrations using a modified gas chromatography (GC Agilent 7890A,
Agilent Technologies, Santa Clara, CA, USA) equipped with flame io-
nization detectors and electron capture detectors. Gas emission was
calculated according to the equation (Song et al., 2008; Wang et al.,
2013):

= ⋅ ⋅ ⋅ ⋅F dc
dt

M
V

P
P

T
T

H
0 0

0

where F is gas emission, dc
dt

is the slope of the curve of gas concentration
versus time, M is the mole mass of the gas, P and P0 are the atmospheric
pressure in situ and under standard conditions, T and T0 are the abso-
lute temperature in situ and under standard conditions, H is the relative
height of the column above the water surface, and V0 is the mole vo-
lume of the gas under standard conditions. Cumulative emission was
calculated as the mean of the emissions on each pair of consecutive
sampling days multiplied by the time interval between them (Johnson
et al., 2006; Begum et al., 2014).

At harvest, we counted number of ramets of H. vulgaris, and mea-
sured leaf area (WinFOLIA Pro 2004a, Regent Instruments, Inc., QC,
Canada). Net photosynthetic rate (Pn) was measured at a CO2 con-
centration of 400 μmol mol−1 and a photo flux density of
1200 μmol m−2 s−1 using a Li-6400 photosynthesis system (Li-Cor
Biosciences, Lincoln, NE, USA). Then, plant material was dried at 70 °C
for 72 h and weighed. Plant dry mass was expressed as g m−2.

2.4. Data analysis

Before analyses, the data on growth and greenhouse gas emissions
were checked for normality and homogeneity of variance, and no data
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transformation was needed. We used two-way ANOVA to examine ef-
fects of water supply frequency and intensity of drying-rewetting cycles
and their interaction on biomass, number of ramets, leaf area and net
photosynthesis rate of H. vulgaris and emissions of CO2, CH4, and N2O
from the plant-soil systems in the microcosms. Regression was used to
examine the relationships of emissions of CO2, CH4, and N2O with
biomass, number of ramets and leaf area of H. vulgaris. We used Tukey
tests for multiple comparisons. The analyses were conducted with SPSS
18.0 (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Effects of frequency and intensity on plant growth

There was a highly significantly interactive effect of frequency and
intensity of drying-rewetting cycles on growth and net photosynthesis
rate of H. vulgaris (Table 1). Under the low intensity treatment, biomass,
number of ramets and leaf area were significantly higher in the high
than in the low and the medium frequency treatment (Fig. 1A–C), and
net photosynthesis rate was larger in the high than in the low frequency
treatment (Fig. 1D). Under the medium intensity treatment, however,

high frequency significantly decreased biomass, number of ramets and
leaf area, but did not affect net photosynthesis rate of H. vulgaris
(Fig. 1). Under the high intensity treatment, high frequency sig-
nificantly decreased biomass and leaf area, but did not affect number of
ramets or net photosynthesis rate (Fig. 1).

3.2. Effects of frequency and intensity on greenhouse gas emissions

There was a highly significant effect of frequency and intensity on
CO2 emission from the H. vulgaris microcosms (Table 1). Under the low
intensity treatment, CO2 emission was significantly higher in the high
frequency treatment than in the medium and low frequency treatments
(Fig. 2A). Increasing frequency of drying-rewetting cycles significantly
decreased CO2 emission under the high intensity treatment, but had no
significant effect under the medium intensity treatment (Fig. 2A). CH4

emission was significantly higher in the high than in the low and the
medium frequency treatment under the high intensity treatment, and
was also significantly higher in the high than in the medium frequency
treatment under the medium intensity treatment (Table 1, Fig. 2B).
However, CH4 emission did not differ significantly between the three
frequency treatments under the low intensity treatment (Fig. 2B). N2O
emission was significantly higher in the high than in the medium and
low frequency treatment under the low intensity treatment, but did not
differ significantly between the three frequency treatments under the
medium and the high intensity treatment (Table 1, Fig. 2C).

3.3. Relationships between greenhouse gas emissions and plant growth

CO2 emission was significantly positively related to biomass
(R2 = 0.56, P < 0.001), number of ramets (R2 = 0.49, P < 0.001)
and leaf area (R2 = 0.40, P < 0.001) of H. vulgaris, but not to net
photosynthesis rate (R2 = 0.06, P = 0.135, Fig. 3). In contrast, neither
CH4 emission (R2 = 0.001–0.008, P = 0.58–0.84) nor N2O emission
(R2 = 0.04–0.08, P = 0.09–0.22) was significantly related to biomass,
number of ramets or leaf area of H. vulgaris.

Table 1
Effects of frequency and intensity of drying-rewetting cycles on growth of H. vulgaris and
greenhouse gas emissions of the microcosms.

Variable Frequency (F) Intensity (I) F × I

F2,36 P F2,36 P F4,36 P

Biomass 0.76 0.474 30.10 < 0.001 23.74 < 0.001
No. of ramets 0.72 0.493 19.14 < 0.001 23.18 < 0.001
Leaf area 5.24 0.010 2.91 0.067 15.59 < 0.001
Photosynthesis rate 6.14 0.005 6.84 0.003 4.37 0.006
CO2 emission 0.16 0.850 10.67 < 0.001 12.89 < 0.001
CH4 emission 5.26 0.011 4.33 0.022 0.56 0.696
N2O emission 0.43 0.656 0.64 0.533 3.41 0.021

The given are F, degree of freedom and P of two-way ANOVAs. Values with P < 0.05 are
in bold.

Fig. 1. Effects of frequency and intensity of
drying-rewetting cycles on (A) biomass, (B)
number of ramets, (C) leaf area and (D) net
photosynthesis rate (Pn) of H. vulgaris. Bars and
vertical lines represent means and SE (n = 5).
With each level of intensity, different letters in-
dicate that means differ significantly among the
frequency treatments (by Tukey tests).
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4. Discussion

We found that increasing frequency of drying-rewetting cycles
promoted growth and clonal reproduction of H. vulgaris under low in-
tensity of drying-rewetting cycles, but decreased them or had no sig-
nificant effect under medium and high intensity. Previous studies
showed that increasing frequency increased net photosynthesis and
aboveground net primary productivity of grassland ecosystems (Knapp
et al., 2002; Fay et al., 2003; Heisler-White et al., 2009). This was in
accordance with our results under low intensity of water supply, and
implied that high frequency of water supply promoted the water utili-
zation efficiency of the H. vulgaris communities. Wilcox et al. (Wilcox
et al., 2015) showed that decreasing frequency had different effects on
above- and belowground net primary productivity in semiarid and
mesic grassland ecosystems. Specifically, more xeric grasslands were

more sensitive to frequency of precipitation than more mesic grasslands
(Huxman et al., 2004; Heisler-White et al., 2009; Knapp et al., 2015).
The mechanism is that other resources become more limiting to eco-
system processes so that sensitivity to alterations in precipitation de-
creases when intensity of precipitation increases (Huxman et al., 2004).
We found that the highest frequency inhibited growth of H. vulgaris
with medium and high water supply intensity. This was likely because
H. vulgaris had to adapt to the inundation environment repeatedly.

Increasing frequency promoted CO2 emission from the H. vulgaris
microcosms with low water supply intensity (corresponding to
0.6 ± 0.07 to 1.4 ± 0.12 g m−2 d−1), but decreased or had no effect
with medium and high water supply intensity. Such an interactive effect
of frequency and intensity of dry-rewetting cycles on CO2 emission was
consistent with the effect on growth of H. vulgaris. Consequently, CO2

emission was significantly positively related to growth of H. vulgaris.
These results suggest that CO2 emission from the H. vulgaris microcosms
may mainly derive from shoot and root respiration of H. vulgaris, and/or
from fast respiration from easily degraded organic matter in the root
exudate, agreeing with the findings of previous studies (Zhang et al.,
2009; Hirota et al., 2010; Laine et al., 2012; Mo et al., 2015). The po-
sitive relationship between CO2 emission and biomass also indicates
that CO2 emission from plant-soil systems may be predicted indirectly
by biomass of plant communities (Zhang et al., 2009; Hirota et al.,
2010; Mo et al., 2015) which is much easier to measure compared to
CO2 emission.

Higher frequency promoted CH4 emission under higher water
supply intensity, but CH4 emission was not related to biomass of H.
vulgaris. Previous studies showed that CH4 emission were influenced by
temperature and soil water content which affected the production of
substrate precursors and microbial activity (Beringer et al., 2013).
Higher frequency maintained higher soil water content which benefited
methanogenic bacteria in the soil (Joabsson and Christensen, 2001;
Ding et al., 2005). The fairly short delays for the recovery of metha-
nogens with high frequency may be related to an adaption of the
communities to oxygen stress (Estop-Aragones and Blodau, 2012).

Increasing frequency promoted N2O emission from the H. vulgaris
microcosms under low water supply intensity, but had no effect under
medium and high water supply intensity. N2O production was mainly
controlled by soil nitrification and denitrification processes, which were
mainly affected by environmental factors such as soil temperature,
water content and soil nutrient levels (Beringer et al., 2013). N2O
emission generally occurs with suitable soil moisture of 90%–100% or
water-filled pore space of 70%–90% (Zheng et al., 1997; Welzmiller
et al., 2008). In our study, the soil moisture was very likely to differ
between the frequency and intensity treatments, but it might not reach
an appropriate range of 90%–100% during the most period of the ex-
periment. Thus N2O emission did not show significant difference under
medium and high water supply intensity. This was accordance with
previous studies showing that increasing soil moisture did not sig-
nificantly affect N2O emission due to its complex and multiple routes of
formation (Hu et al., 2015; Maucieri et al., 2017b).

We conclude that frequency and intensity of drying-rewetting cycles
can interact to affect greenhouse gas emissions from ecosystems.
Prolonged drought (low frequency of precipitation) due to future cli-
matic change may decrease CO2 and N2O emissions under a lower
amount (intensity) of precipitation, but may promote CO2 and CH4

emissions under a higher amount of precipitation.
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treatments (by Tukey tests).
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