Contents lists available at ScienceDirect

Chinese Journal of Chemical Engineering

journal homepage: www.elsevier.com/locate/CJCHE

Catalysis, Kinetics and Reaction Engineering

Carbon nanotubes loaded with vanadium oxide for reduction NO with NH_3 at low temperature $\overset{\curvearrowleft}{\sim}$

Shuli Bai ^{1,2,*}, Shengtao Jiang ¹, Huanying Li ^{3,*}, Yujiang Guan ¹

¹ College of Life Science, Taizhou University, Taizhou 318000, China

² Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou 318000, China

³ College of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China

ARTICLE INFO

Article history: Received 27 December 2013 Received in revised form 23 April 2014 Accepted 28 July 2014 Available online 12 December 2014

Keywords: Selective catalytic reduction $V_2O_5/CNTs$ catalyst Flue gas Physic-chemical property

ABSTRACT

The catalytic activity of carbon nanotubes-supported vanadium oxide (V₂O₅/CNTs) catalysts in the selective catalytic reduction (SCR) of NO with NH₃ at low temperatures (\leq 250 °C) was investigated. The effects of V₂O₅ loading, reaction temperature, and presence of SO₂ on the SCR activity were evaluated. The results show that V₂O₅/CNTs catalysts exhibit high activity for NO reduction with NH₃ at low-temperatures. The catalysts also show very high stability in the presence of SO₂. More interestingly, their activities are significantly promoted instead of being poisoned by SO₂. The promoting effect of SO₂ is distinctly associated with V₂O₅ loading, particularly maximized at low V₂O₅ loading, which indicated the role of CNTs support in this effect. The promoting effect of SO₂ at low temperatures suggests that V₂O₅/CNTs catalysts are promising catalytic materials for low-temperature SCR reactions.

© 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

1. Introduction

Carbon nanotubes (CNTs) possess many excellent properties, including high thermal stability and the accessibility of outer and inner surfaces, making them highly attractive as catalysts or catalyst supports [1,2]. CNTs-supported catalysts [3–8] exhibit excellent catalytic activity and selectivity in 1-octene hydroformylation, selective cinnamaldehyde hydrogenation to hydrocinnamaldehyde, NH₃ decomposition, selective H₂S oxidation, selective hydrogenation of nitrobenzene and NO decomposition.

Selective catalytic reduction (SCR) of NO with NH₃ is one of the most important industrial processes in environmental catalysis. The general reaction is as follows: $4NO + 4NH_3 + O_2 \rightarrow 4 N_2 + 6H_2O$. However, SO₂ poisoning is a key problem in the development of SCR catalysts. Several reported catalysts [9–13], such as MnO₂/Al₂O₃, CuO/AC and Fe₂O₃/AC, show high activities in SCR reactions at 120 °C to 250 °C, but they are prone to deactivation by SO₂ because of the formation of solid SO₄²⁻ salts on the catalysts surfaces, which block the catalyst pores. Others reported that catalysts, such as V₂O₅/TiO₂ or V₂O₅-WO₃/ TiO₂ must be used at temperatures above 350 °C to avoid catalyst deactivation [14,15]. Thus, developing catalysts that resist SO₂ poisoning at low temperatures is necessary for practical applications.

* Corresponding authors.

E-mail addresses: baishuli@tzc.edu.cn (S. Bai), lihuanying@tzc.edu.cn (H. Li).

Activated carbon-supported vanadium oxide (V_2O_5/AC) catalysts [16–19] exhibit high activities in SCR reactions within the low-temperature range (180 °C to 250 °C). The V_2O_5/AC catalysts are not poisoned, moreover are significantly promoted by SO₂. The excellent property of V_2O_5/AC catalysts is attributed to the special carbon surfaces. However, the unique catalytic functions remain unclear because of the complex composition and structure of ACs. Unlike ACs, CNTs have relatively uniform structures and can be rationally functioned, which may be helpful for the understanding of its catalytic functions. The reaction-released heat and the fluctuation of the flue gas temperature often lead to the burning of the AC support because of the high reactivity of AC with oxygen. In contrast, CNTs have more stable structures and are more resistant to burning, thus, they exhibit better properties in SCR reactions [20,21].

In the present work, CNTs-supported V₂O₅ catalysts (V₂O₅/CNTs) were prepared and investigated for their catalytic activities in low-temperature SCR reactions. The effects of the V₂O₅ loading, reaction temperatures, and performance of the catalysts in the presence SO₂ were also studied.

2. Experimental

2.1. Catalysts preparation

The raw CNTs samples prepared by our research group were refluxed and oxidized with concentrated HNO₃ under stirring for 10 h to remove pre-existing metal species and eliminate the possible interferences. The CNTs were then collected *via* filtration, washed fully

1004-9541/© 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

CrossMark

with deionized water and ethanol, and dried at 110 °C in air for 12 h. The treatment also introduced carboxyl and hydroxyl groups onto the CNTs surfaces, which are helpful for the anchoring and uniform dispersion of vanadium oxide species on the CNTs surfaces.

The V₂O₅/CNTs catalysts were prepared through pore volume impregnation of HNO₃-oxidized CNTs using an aqueous solution of ammonium metavanadate in oxalic acid. The catalysts were then dried overnight at 60 °C and at 110 °C for 5 h, calcinated under an argon stream at 500 °C for 5 h, and pre-oxidized in air at 250 °C for 3 h. The weight V₂O₅ of V₂O₅/CNTs catalysts was measured by the inductively coupled plasma (ICP) atomic emission spectrometer (AtomScan 16, TJA, USA).

2.2. Catalyst characterization

Temperature-programmed desorption (TPD) experiments were performed in a fixed-bed reactor to determine the effect of different catalysts surface on SO₂ adsorption. CNTs, V₂O₅ and 0.1%(by mass) V₂O₅/CNTs catalysts were employed in the reactor and pre-treated in Ar stream (100 ml·min⁻¹) at 500 °C for 1 h, respectively, and then cooled to 250 °C in the same stream. The pre-treated samples were then exposed to a gas mixture 1000 μ l·L⁻¹ SO₂ + 5.0% O₂ (by volume) in Ar at a flow rate of 100 ml·min⁻¹. After adsorption equilibrium was reached (about 2 h), the sample was purged with Ar of 100 ml·min⁻¹ for 1 h to remove the physically adsorbed SO₂. Finally, TPD experiment was carried out in Ar of 100 ml·min⁻¹ from 250 to 640 °C at a heating rate of 8 °C·min⁻¹. During the TPD, exiting SO₂ was continuously analyzed online by flue gas analyzer (ZR-3100TZ) equipped with NO, NO₂, SO₂ and O₂ sensors.

The morphology and structure of the as-prepared catalysts were characterized *via* transmission electron microscopy (TEM JEOL JEM-2010), and X-ray diffraction (XRD) patterns were obtained on a D8 ADVANCE BRUKER diffractometer equipped with a CuK_{α} radiation (wavelength 0.15406 nm) at 2.2 kW. The specific surface areas of the samples were determined through nitrogen adsorption at 77 K on the basis of Brunner–Emmet–Teller (BET) equation using a micrometrics Tristar 3000.

2.3. Activity test

The SCR activity of the catalysts in NO reduction was evaluated in a fixed-bed glass reactor (6 mm inner diameter, 510 mm length). NO in Ar, SO₂ in Ar (when used), pure O₂ and pure Ar were used to mimic the flue gas, and NH₃ in Ar was used as the reductive gas. All gases were controlled by mass flow controllers, and pre-mixed in a chamber filled with glass wool before entering the reactor. For experiments involving SO₂, NH₃ in Ar was allowed to bypass the mixing chamber and was directly fed into the reactor to avoid possible SO₂–NH₃ reactions in front of the catalyst bed. The concentration of NO, NO₂, SO₂ and O₂ at the inlet and outlet of the reactor was simultaneously monitored using an online flue gas analyzer (ZR-3100TZ) equipped with NO, NO₂, SO₂ and O₂ sensors.

3. Results and Discussion

TEM images of the treated CNTs sample and 20% (by mass) V₂O₅/ CNTs catalysts are shown in Fig. 1(a) and (b). The diameter of the nanotubes ranges from 12 nm to 50 nm and the length reaches tens of micrometers. No vanadium species is observed on the 20% (by mass) V₂O₅/CNTs catalyst surface [Fig. 1(b)]. The catalysts with different V₂O₅ loadings were characterized *via* XRD. The three distinctive peaks in Fig. 1(c) are mainly assigned to the graphite of CNTs [20]. The crystalline vanadium is difficult to be observed due to some of the crystalline vanadium at 2 θ of 20°–30° that coincides with the 002 diffraction of graphite. TEM and XRD results indicate that the vanadium species on CNTs may be very small or highly dispersed [21]. The V_2O_5 mass of the 20% (by mass) V_2O_5 /CNTs catalysts (about 18.7%) was measured by ICP and the result shows that vanadium species are loaded on the surface of the catalysts.

The catalytic activity of the V₂O₅/CNTs catalyst is much higher than that of the V₂O₅/AC catalyst under the same reaction conditions (Fig. 2). In the experiment, the Brunauer–Emmett–Teller (BET) surface of the selected CNTs (220 $m^2 \cdot g^{-1}$) is lower than that of AC (615 $m^2 \cdot g^{-1}$), suggesting that the CNTs exhibit better catalytic properties than AC when used as catalyst supports for the NO reduction reaction because of its structure and specifically surface.

Fig. 3 shows NO conversion over the V₂O₅/CNTs catalysts with different V2O5 loadings at 250 °C. Each result is obtained through a 4 h reaction after NO concentration is nearly unchanged. The V₂O₅-unloaded CNTs sample shows very low activity under the experimental conditions. The 0.1% (by mass) V₂O₅ loading on the CNTs only results in a significant improvement of the catalytic activity, thereby enhancing NO conversion to approximately 51%. Further increase in V₂O₅ loading from 0.1% (by mass) to 5% (by mass) leads to a continuous increase in NO conversion from 51% to 100% until it subsequently decreases to approximately 88% at a V₂O₅ loading of 20% (by mass). The catalysts with lower V₂O₅ loadings [0.1%–1% (by mass)] exhibit lower activity, which may be attributed to the lower V coverage on the CNTs surface. However, the nearly constant activity at V_2O_5 loadings of 5% to 15% (by mass) and the decreased activity of the 20% (by mass) V₂O₅/CNTs catalyst are not easy to explain because the XRD results of these catalysts show no diffraction peaks for vanadium compounds and no vanadium compound particles are observed via TEM. These results suggest that the vanadium species particles in the catalysts are small size and highly dispersed on the CNTs surface. In addition, all the catalysts show good stability within the tested time range.

The effect of SO₂ on the activities of the V₂O₅/CNTs catalysts with different V₂O₅ loadings at 250 °C is shown in Fig. 4. For CNTs alone, the degree of NO conversion in the reaction stream with and without SO₂ shows no significant difference. However, for the V₂O₅/CNTs catalysts at V₂O₅ loadings of 0.1% to 1% (by mass), NO conversion in the presence of SO₂ increases significantly and then becomes nearly constant at high levels as the reaction proceeds. These results suggest that the presence of SO₂ increases NO reduction over the V₂O₅/CNTs catalysts at low temperature. The effect of SO₂ promotion is associated with V₂O₅ loading, that is, SO₂ promotion increases as the V₂O₅ loading decreases (Fig. 4), indicating the importance of the CNTs support surface. Thus, a synergistic relationship between the CNTs and the vanadium species is implied. However, the mechanism behind this cooperation remains unknown, hence, further investigations are recommended.

In addition, the promoting effect of SO₂ revealed in this study, instead of the expected poisoning effect in the presence of the V₂O₅/ CNTs catalyst must be understood. The promoting effect of SO₂ on the V₂O₅/CNTs catalyst is likely associated with SO₂ adsorption and oxidation and the formation of SO₄²⁻ species on the catalyst surfaces. These SO₄²⁻ species act as new acidic sites and improve NH₃ adsorption, thereby promoting the activity of the catalyst. The results agree with previous observation on the V₂O₅/AC catalyst at low temperatures [19] and those of Chen and Yang [22,23] on V₂O₅/TiO₂ and TiO₂ catalysts at high temperatures (>350 °C).

Fig. 5 shows the profiles of the temperature-programmed desorption (TPD) of SO₂ adsorbed on the CNTs, V₂O₅, and 0.1% (by mass) V₂O₅/CNTs catalysts during the oxidation of SO₂ by O₂. The SO₂ adsorption on the V₂O₅ surface under the given adsorption conditions is very limited. A negligible amount of SO₂ is desorbed during TPD from 250 °C to 640 °C. The TPD of SO₂ on the CNTs catalyst shows a peak at approximately 340 °C, however, the amount desorbed is very low. In addition, the 0.1% (by mass) V₂O₅/CNTs catalyst exhibits a desorption peak at a temperature similar to that of the CNTs, which further supports the suggestion that the formed SO₄²⁻ species is primarily associated with the carbon surface rather than the vanadium surface. Furthermore, the amount desorbed from the 0.1% (by mass) V₂O₅/CNTs

Fig. 1. TEM of the treated CNTs (a), 20% (by mass) V₂O₅/CNTs catalysts (b) and X-ray diffractograms of vanadium oxide catalyst support on carbon nanotubes (c).

catalyst is significantly higher than that from the CNTs. The increased adsorption of SO₂ on the V₂O₅/CNTs catalyst under the given conditions may be attributed to a synergistic interaction between carbon and V₂O₅,

wherein SO₂ is initially oxidized into SO₃ on the V₂O₅ surface, and SO₃ then migrates and attaches to the carbon surface. Furthermore, the adsorbed SO₃ is converted into SO₄²⁻ via reaction with H₂O, which is

Fig. 2. Comparison of catalytic activity of 0.1% (by mass) $V_2O_5/CNTs$ and 0.1% (by mass) V_2O_5/AC at 250 °C. Reaction conditions: 450 μ l ·L⁻¹ NO, 500 μ l ·L⁻¹ NH₃, 5% O₂ (by volume), WHSV, 30000 h⁻¹, reaction temperature, 250 °C.

Fig. 3. Effect of V₂O₅ loading on the activity of V₂O₅/CNTs catalysts. Reaction conditions: 450 μ l·L⁻¹ NO, 500 μ l·L⁻¹ NH₃, 5% O₂ (by volume), WHSV, 30000 h⁻¹, reaction temperature, 250 °C.

Fig. 4. Effect of SO₂ on the activity of V₂O₅/CNTs and CNTs catalysts. Reaction conditions: 450 μ l·L⁻¹ NO, 500 μ l·L⁻¹ NH₃, 5% (by volume) O₂, 400 μ l·L⁻¹ SO₂ (when used), WHSV, 30000 h⁻¹, reaction temperature, 250 °C.

Fig. 5. TPD patterns of SO₂ on different catalysts after a SO₂ + O₂ treatment. The treatment was performed at 250 °C in 1000 μ l·L⁻¹ SO₂ + 5%O₂ (Ar balance) for 2 h, followed by a purge with Ar for 1 h. The TPD was carried out in Ar of 100 ml·min⁻¹ at a heating rate of 8 °C·min⁻¹.

formed during the SCR reaction. The SO_4^{2-} species then acts as a new acid sites and increases NH₃ adsorption. Thus, SO₂ induces a promoting effect on the V₂O₅/CNTs catalysts during SCR at low temperatures.

4. Conclusions

In this work, CNTs loaded with vanadium oxide for catalytic reduction NO with NH_3 at low temperatures are investigated. The results show that the $V_2O_5/CNTs$ catalysts exhibit a high SCR activity at 250 °C. Interestingly, SO₂ does not poison the catalysts but instead significantly promotes their activities when the V_2O_5 loading is below 1% (by mass). The SO₂ promoting effect on the activities of the V₂O₅/ CNTs is attributed to the synergistic relationship between the CNTs and the vanadium species. This unique promoting effect of SO₂ at low temperatures suggests that the V₂O₅/CNTs catalyst system is a promising catalytic material for low-temperature SCR reactions. Further investigations on the function of CNTs are of significant scientific interest.

References

- P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis, *Appl. Catal. A* 253 (2) (2003) 337–358.
- [2] G.G. Wildgoose, C.E. Banks, R.G. Compton, Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications, *Small* 2 (2) (2006) 182–193.
- [3] H.Z. Zhang, J.S. Qiu, C.H. Liang, Z.L. Li, X.N. Wang, Y.P. Wang, Z.C. Feng, C. Li, A novel approach to Co/CNTs catalyst via chemical vapor deposition of organometallic compounds, *Catal. Lett.* 101 (3–4) (2005) 211–214.
- [4] J.P. Tessonnier, L. Pesant, G. Ehret, M.J. Ledoux, C. Pham-Huu, Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde, *Appl. Catal. A* 288 (1-2) (2005) 203–210.
- [5] S.F. Yin, Q.H. Zhang, B.Q. Xu, W.X. Zhu, C.F. Nu, C.T. Au, Investigation on the catalysis of CO_X-free hydrogen generation from ammonia, J. Catal. 224 (2) (2004) 384–396.
- [6] J.M. Nhut, L. Pesant, J.P. Tessonnier, G. Winé, J. Guille, P.H. Cuong, M.J. Ledoux, Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis, *Appl. Catal. A* 254 (2) (2003) 345–363.
- [7] J.Z. Luo, L.Z. Gao, Y.L. Leung, C.T. Au, The decomposition of NO on CNTs and 1% (by mass) Rh/CNTs, Catal. Lett. 66 (1–2) (2000) 91–97.
- [8] S.J. Wang, W.X. Zhu, D.W. Liao, C.F. Ng, C.T. Au, In situ FTIR studies of NO reduction over carbon nanotubes (CNTs) and 1% (by mass) Pd/CNTs, *Catal. Today* 93–95 (2004) 711–714.
- [9] H. Li, K.H. Han, H.T. Liu, C.M. Lu, Experimental and modeling study on de-NO_x characteristics of selective non-catalytic reduction in O₂/CO₂ atmosphere, *Chin. J. Chem. Eng.* 22 (8) (2014) 943–949.
- [10] L. Singoredjo, R. Korver, F. Kapteijn, J. Moulijn, Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia, *Appl. Catal. B* 1 (4) (1992) 297–316.
- [11] L. Singoredjo, M. Slagt, J.V. Wees, F. Kapteijn, J.A. Moulijn, Selective catalytic reduction of NO with NH₃ over carbon supported copper catalysts, *Catal. Today* 7 (2) (1990) 157–165.
- [12] Z.P. Zhu, Z.Y. Liu, S.J. Liu, H.X. Niu, T.D. Hu, T. Liu, Y.N. Xie, NO reduction with NH₃ over activated carbon-supported copper oxide catalysts at low temperatures, *Appl. Catal. B* 26 (1) (2000) 25–35.
- [13] T. Grzybek, H. Papp, Selective catalytic reduction of nitric oxide by ammonia on Fe³⁺-promoted active carbon, *Appl. Catal. B* 1 (4) (1992) 271–283.
- [14] H. Bosch, F. Janssen, Formation and control of nitrogen oxides, *Catal. Today* 2 (4) (1988) 369–379.
- [15] Y. Gao, T. Luan, T. Lv, K. Cheng, H.M. Xu, Performance of V₂O₅–WO₃–MOO₃/TiO₂ catalyst for selective catalytic reduction of NO_x by NH₃, *Chin. J. Chem. Eng.* 21 (1) (2013) 1–7.
- [16] Z.P. Zhu, Z.Y. Liu, S.J. Liu, H.X. Niu, Catalytic NO reduction with ammonia at low temperatures on V₂O₅/AC catalysts: effect of metal oxides addition and SO₂, *Appl. Catal. B* 30 (3-4) (2001) 267–276.
- [17] Z.P. Zhu, Z.Y. Liu, S.J. Liu, H.X. Niu, A novel carbon-supported vanadium oxide catalyst for NO reduction with NH₃ at low temperatures, *Appl. Catal. B* 23 (4) (1999) L229–L233.
- [18] Z.P. Zhu, Z.Y. Liu, H.X. Niu, S.J. Liu, Promoting effect of SO₂ on activated carbonsupported vanadia catalyst for NO reduction by NH₃ at low temperatures, *J. Catal.* 187 (1) (1999) 245–248.
- [19] Z.P. Zhu, Z.Y. Liu, H.X. Niu, S.J. Liu, T.D. Hu, Y.I. Xie, Mechanism of SO₂ promotion for NO reduction with NH₃ over activated carbon-supported vanadium oxide catalyst, *J. Catal.* 197 (1) (2001) 6–16.
- [20] S.L. Bai, J.H. Zhao, Z.P. Zhu, Template function of liquid membranes in the assembly of tube-in-tube carbon nanostructures, *Appl. Surf. Sci.* 256 (6) (2010) 1689–1693.
- [21] S.L. Bai, J.H. Zhao, L. Wang, Z.P. Zhu, SO₂-promoted reduction of NO with NH₃ over vanadium molecularly anchored on the surface of carbon nanotubes, *Catal. Today* 158 (3-4) (2010) 393–400.
- [22] J.P. Chen, R.T. Yang, Mechanism of poisoning of the V₂O₅/TiO₂ catalyst for the reduction of NO by NH₃, J. Catal. 125 (2) (1990) 411–420.
- [23] J.P. Chen, R.T. Yang, Selective catalytic reduction of NO with NH₃ on SO₄²⁻/TiO₂ superacid catalyst, J. Catal. 139 (1) (1993) 277–288.