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A B S T R A C T

Human footprint and soil variability may be important in shaping the spread of invasive plant species (IPS).
However, until now, there is little knowledge on how human footprint and soil variability affect the potential
distribution of IPS in different biomes. We used Maxent modeling to project the potential distribution of 29 IPS
with wide distributions and long introduction histories in China based on various combinations of climatic
correlates, soil characteristics and human footprint. Then, we evaluated the relative importance of each type of
environmental variables (climate, soil and human footprint) as well as the difference in range and similarity of
the potential distribution of IPS between different biomes. Human footprint and soil variables contributed to the
prediction of the potential distribution of IPS, and different types of biomes had varying responses and degrees of
impacts from the tested variables. Human footprint and soil variability had the highest tendency to increase the
potential distribution of IPS in Montane Grasslands and Shrublands. We propose to integrate the assessment in
impacts of human footprint and soil variability on the potential distribution of IPS in different biomes into the
prevention and control of plant invasion.

1. Introduction

Plant invasion is a large threat to global biodiversity (Gurevitch and
Padilla, 2004; Hejda et al., 2009; Vilà et al., 2011; Bellard et al., 2013).
Invasive plant species (IPS) can invade their non-native ranges, and
decrease the habitable space of native plant species (Hejda et al., 2009;
Vilà et al., 2011; Pyšek et al., 2012). Invasion biologists have con-
ventionally developed some risk assessment tools such as species dis-
tribution models (SDMs) to evaluate the invasion risk of IPS based on
significant abiotic and biotic factors influencing the potential distribu-
tion of IPS (Thuiller et al., 2005; Foxcroft et al., 2010; Xu and Qiang,
2011; Spear et al., 2013; Donoghue and Edwards, 2014; Ray et al.,
2016). Human footprint is the combination of human activities that
affect the nature directly or indirectly (Gallardo et al., 2014). It is an
environmental variable that may contribute to the distribution of IPS by
increasing reproductive opportunities through gardening, forestry and
transportation in new areas (Beans et al., 2012; Donaldson et al., 2014;
Gallardo et al., 2014). Furthermore, soil factors may also play an im-
portant role in the spread of IPS. For instance, the spread of IPS occurs
more frequently than expected and causes greater damage in the soil
conditions of high resource biomes such as tropical and sub-tropical
grasslands and forests (Foxcroft et al., 2010; Donoghue and Edwards,

2014; Joshi et al., 2015; Ray et al., 2016).
A biome is a large community of plant and faunal species that have

common characteristics due to similar conditions (i.e. climate), and
usually found at a large geographical scale (Olson et al., 2001). Dif-
ferent biomes may provide habitats that favor the expansion of IPS at
varying degrees (Thuiller et al., 2005; Petitpierre et al., 2012; Faulkner
et al., 2014; Wan et al., 2016; Wang et al., 2017). Some studies have
developed the model-based methods to evaluate the potential dis-
tribution of IPS in the invaded regions based on different biomes
worldwide (e.g. Thuiller et al., 2005; Bellard et al., 2013; Donoghue
and Edwards, 2014; Wan et al., 2017). For instance, biological con-
servationists have developed valuable biosecurity tools for the invasion
of IPS based on the potential distributions and biomes using SDMs
(Donaldson et al., 2014; Faulkner et al., 2014). However, these studies
may misestimate the potential distribution of IPS in the invaded ranges
by using only climatic variables. This is because climate alone cannot
thoroughly explain the potential distribution of IPS in the invaded
ranges (Beans et al., 2012; Bellard et al., 2013; Merow et al., 2013;
Radosavljevic and Anderson, 2014), and other environmental variables
such as human footprint and soil characteristics may also play an im-
portant role (Beans et al., 2012; Zhang et al., 2014). Furthermore,
strategies for preventing and controlling IPS may be derived from the
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relationships between human footprint, soil characteristics and the
distribution of IPS in different biomes (Thuiller et al., 2005; Keeley,
2006; Faulkner et al., 2014). Hence, an understanding of effects of such
variables on the potential distribution of IPS in different biomes is
important, but still poorly explored. We hypothesize that human foot-
print and soil variability have varying degrees of impacts on the po-
tential distribution of IPS among different biomes.

To explore the relationships among human footprint, soil varia-
bility, biomes and the distribution of IPS, we modeled the distribution
of different IPS that are widely distributed and also have long in-
troduction histories in China. Specifically, we addressed the following
questions: 1) Can combined human footprint and soil variables have
large contribution to the potential distribution of IPS? 2) Are there any
differences in the impacts of human footprint and soil variables on the
potential distribution of IPS among various biomes?

2. Materials and methods

2.1. Study area

The study region was the mainland China, which has a total land
area of 9.6 × 106 km2 with higher altitudes in the west compared to the
eastern regions. Mountains, plateaus and hills cover about 67% of the
land area, while basins and plains make up around 33%. Climatic
conditions in the mainland are mainly continental monsoons, and vary
considerably (Domrös and Peng, 2012). There are seven main biomes,
including grasslands, shrublands and forests (Fig. 1; Olson et al., 2001).
The maps of the biomes used were downloaded from www.
worldwildlife.org.

2.2. Species data

A total of 29 IPS with wide distributions in China were used based
on Xu and Qiang (2011). We chose these species based on the following
criteria: 1) the species should have had severely invaded mainland
China; 2) there were more than 50 occurrence records in invaded re-
gions (i.e. China) to ensure the reliability of logistic SDM, and 3) they

should have been introduced to China for more than 100 years (Xu and
Qiang, 2011). Thus, the IPS could reach the full invaded ranges (i.e.
China) as far as possible. Some IPS have no enough occurrence records
in native ranges (the detailed information in Table S1). The occurrence
records, especially specimens or recorded sightings, of the 29 IPS were
compiled in both native and invaded ranges from a variety of online
databases, including Global Biodiversity Information Facility (GBIF;
www.gbif.org) and Chinese Virtual Herbarium (CVH; www.cvh.org.cn).
We minimized the sample bias of the species occurrence data as follow:
all occurrence localities were checked using ArcGlobe 10.2 and ArcGIS
10.2 (Esri; Redlands, CA, USA) to determine whether they were dis-
tributed in reasonable ranges based on Xu and Qiang (2011) and the
ISSG (Invasive Species Specialist Group; www.issg.org) and obvious
errors were removed.

2.3. Environmental variables

Environmental variables such as climate, elevation, soil and human
footprint were included as input of SDM (Table S2). Data on the 19 bio-
climatic variables and elevation at a 2.5-arc-minute spatial resolution
(4.3 km at the equator) were downloaded from the WorldClim database
(Hijmans et al., 2005; Table S2). A collinearity test was done among the
19 bio-climatic variables based on Pearson's correlation coefficient to
eliminate highly correlated variables from the final modeling procedure
(Dormann et al., 2013). We excluded the variables with a cross-corre-
lation coefficient value of> 0.75 or < −0.75 (Zhang et al., 2014;
Park and Potter, 2015; Table S3). In this way, we selected finally only
six out of the 19 bio-climatic variables. These six bio-climatic variables
were related to the potential distribution of Chinese plant species
(Zhang et al., 2016). Elevation data were also used because elevation
was suggested as an important predictor variable in SDM (Hof et al.,
2012). Data on nine soil variables at the 0.5-arc-minute spatial re-
solution were downloaded from SoilGrids1km (http://soilgrids.org/;
detailed information in Table S2). Data of human footprint at the 0.5-
arc-minute spatial resolution (1 km at the equator) were obtained from
The Global Human Footprint Dataset of the Last of the Wild Project,
Version 2, 2005 (LWP-2; HFD; http://sedac.ciesin.columbia.edu/

Fig. 1. The study biomes in China (Olson et al., 2001).
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wildareas/). This dataset was created from nine global data layers
covering human population pressure (population density), land use and
infrastructure (built-up areas, nighttime lights, land use/land cover),
and human access (coastlines, roads, railroads, navigable rivers). Re-
sampled analyses in ArcGIS 10.2 (Esri; Redlands, CA, USA) were used to
translate the 0.5-arc-minute into 2.5-arc-minute for human footprint
and soil variables, as summarized in Table S2. These environmental
variables, including climate, soil and human footprint variables, were
related to the expansion and physiological performance of plant spe-
cies. Here, elevation was combined with climatic variables as one da-
taset (namely, climatic variables). To evaluate the impact of human
footprint and soil variability on the potential distribution of IPS, we
used the following four datasets as input to SDM: 1) climatic variables,
2) climatic and human footprint variables, 3) climatic and soil vari-
ables, and 4) climatic, soil and human footprint variables.

2.4. Modeling the potential distribution of IPS

Maxent (Version 3.4.0; http://biodiversityinformatics.amnh.org/
open_source/maxent/) is currently one of the most frequently applied
SDMs (Phillips et al., 2006; Baldwin, 2009). In this study, it was used to
estimate the function of the potential distribution of the 29 IPS based on
the occurrence records including both native and invaded ranges
(Shabani and Kumar, 2015; Mainali et al., 2015). Then, we modeled the
geographic locations of these distributions based on the four variable
datasets described above. Thus, we built four different Maxent models:
1) model C (based on climatic variables only), 2) model H (based on
climatic and human footprint variables), 3) model S (based on climatic
and soil variables) and 4) model H+S (based on climatic, soil and
human footprint variables). Then, based on these four models, we ran
the models based on the occurrence records of either native or invaded
ranges. For the maps that were predicted using Maxent, cells with a
value of 1 indicated the highest potential distribution probability, and
those with a value of 0 corresponded to the lowest (Merow et al., 2013).

To improve the accuracy of Maxent, a 4-fold cross-validation ap-
proach was used to divide the presence dataset into approximately four
equal partitions, three of which were used to train the model and one to
generate the SDM estimate (Van Breugel et al., 2016). We set the reg-
ularization multiplier (beta) to 2.0 to produce a smooth and general
response (Radosavljevic and Anderson, 2014). The maximum number
of background points was 10,000, which closely matched the empirical
average distribution and thus the training data of each IPS (Phillips
et al., 2009; Merow et al., 2013). Auto features were used while other
values were kept as Elith et al. (2011) and Mainali et al. (2015).

The receiver operating characteristic (ROC) curves regarded each
value of the prediction as a possible judging threshold (Elith et al.,
2011; Merow et al., 2013; Banag et al., 2015). We assessed the Maxent
model performance using the area under the ROC curve (AUC). To
ensure a high precision, only SDMs with AUC values greater than 0.7
were used (Elith et al., 2011; Merow et al., 2013). However, using the
traditional AUC may not be sufficient to evaluate the performance of
SDMs (Fielding and Bell, 1997; Anderson et al., 2002; Lobo et al., 2008)
as AUC may also show good fit for poor models (Lobo et al., 2008;
Smith, 2013). Hence, we also used 25% of the occurrence localities to
test whether predictions from Maxent (training data) were better than
random predictions (Anderson et al., 2002, 2003). We used the bino-
mial test based on the omission rate to evaluate the performance of
Maxent modeling for the 29 IPS (Anderson et al., 2002). The training
omission rate is the proportion of the training occurrence localities laid
in pixels of predicted absence (Anderson et al., 2002; Phillips et al.,
2006). These are 1-sided tests for the null hypothesis that training
points are predicted no better than those by a random prediction. The
binomial probabilities were based on the 11 common thresholds de-
faulted by Maxent (Phillips et al., 2006; Hu and Jiang, 2010; Anderson
and Gonzalez, 2011). Although the training omission rate may also not
be sufficient, a low omission rate (i.e. lower than 17%) is a necessary

condition for a good model (Phillips et al., 2006).

2.5. Evaluating impacts of human footprint and soil variability on the
potential distribution of IPS

We averaged and overlapped the SDM results of all 29 IPS to pro-
duce the potential distribution map of the 29 IPS based on the four
models (C, H, S and H+S), respectively (Dubuis et al., 2011). Here, we
computed the change in the potential distribution probabilities for each
IPS between the model C and the other three models (i.e. H, S and H
+S) as CPD = (A-B)/A, where CPD is the change in the potential
distribution probabilities of IPS in a grid, A is the potential distribution
probabilities of IPS in that grid based on the model C, B is the potential
distribution probabilities of IPS in that grid based on the models H, S,
and H+S, respectively.

We determined the impacts of human footprint and soil variability
on the potential distribution of each IPS in the biomes based on the
difference of contribution of environmental variables, the difference of
potential distribution ranges and their similarities between the different
Maxent models. First, the jackknife method was adapted to evaluate
effects of each environmental variable on the potential distribution of
IPS using the percentage contribution (PC) for H, S and H+S. PC re-
presents the contribution degree of the environmental variable to the
final model (sum up of all the variables to 100%). We assessed the PC of
soil variability based on the sum of all soil variables (Table S2). Also,
we evaluated the PC of climate using the sum of all the bio-climatic
variables (Table S2). Here, we considered the variable to be important
if its PC was at least 15% of the models for each IPS, and used analysis
of variance to compare the differences in importance of environmental
variables except for the climatic ones (Oke and Thompson, 2015). Then,
we used a non-parametric test to explore the difference between the
models C, H, S and H+S based on the potential distribution prob-
abilities of the occurrence records of each IPS to evaluate the effects of
human footprint and soil variability on the potential distribution of IPS.

Second, ENMTools 1.4.4 was used to evaluate niche breadth of each
IPS in the biomes (Warren et al., 2010; Oke and Thompson, 2015).
Niche breadth, a metric with values from 1 to 0, represents the en-
vironment range strongly correlated with the potential distribution
probability of IPS (Treier et al., 2009; Oke and Thompson, 2015;
Gallagher et al., 2015). In other words, niche breadth equates to the
level of the potential distribution of IPS (Warren et al., 2008; Thuiller
et al., 2012; Slatyer et al., 2013; Oke and Thompson, 2015). The ratio
between niche breadth of C and the other three models were computed
for each biome and each IPS. We used T-test to examine differences in
the ratio of niche breadth among the four models.

Third, ENMTools 1.4.4 was used to measure the similarity of pre-
dictions of the potential distribution probabilities for each IPS in the
biomes between C and the other three models by using Schoener's D
[see Warren et al. (2008, 2010) for detailed information]. Also, we
evaluated the similarity between predictions of the potential distribu-
tion probabilities based on occurrence records at native ranges and
those based on occurrence records at invaded ranges. Schoener's D
ranges from 0 (species having completely discordant potential dis-
tribution) to 1 (species having an identical potential distribution). We
used T-test to analyze the similarity of predictions of the potential
distributions between C and the other three models.

3. Results

All modeling approaches resulted in good fits. All AUC values of the
models were bigger than 0.7 (Table 1 and Table S4), and the training
omission rates of the four models were very low (mean values ranging
from 0.036 in H to 0.148 in C; Table 2; binomial probabilities:
P < 0.0001). Furthermore, the AUC values of the models H, S and H
+S were slightly larger than those of C (Table S4), and the mean
omission rates of H, S and H+S were lower than that of C (Table 2). We
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found that the model C had the largest overlap between predictions of
the potential distribution probabilities based on occurrence records at
native ranges and those based on occurrence records at invaded ranges
across all the 29 IPS (Table S1).

The suitable habitat areas of IPS were mainly distributed in
southern China (Fig. 2a, b, d and f). Specifically, the potential dis-
tribution of IPS was the highest in Tropical and Subtropical Moist
Broadleaf Forests (Fig. 1 and Table S5). The potential distribution
probabilities differed significantly between the model C and the other
three models based on the occurrence records (non-parametric test for
each IPS: P < 0.05). Compared to the model C, model H increased the
potential distribution probability of IPS in southwestern China (Fig. 2c).
Compared to the model H (Fig. 2c), the model S increased the potential
distribution probability of IPS in larger areas in northern China, and
even promoted the potential distributions of IPS in many regions of
southern China (Fig. 2e). The potential distributions of IPS based on the
model H+S (including both human footprint and soil variability;
Fig. 2g) were consistent with those based on the model H (Fig. 2c).

Soil variability had a large effect on the potential distribution of IPS
because the average percentage contribution (PC) across the 29 IPS was
34.09% in the model S (Table 1). The contribution of soil variability to

the model ranged from 14.85% in Eucalyptus robusta to 60.36% in Hi-
biscus trionum (Table 1). However, there was little effect of each soil
variable on the potential distribution of IPS (PC of each soil variable
was lower than 15%; data not shown). Comparing with soil variability,
human footprint did not have so large effect on the potential distribu-
tion of IPS (mean PC = 27.24% in the model H; Table 1). The con-
tribution of human footprint to the potential distributions of IPS ranged
from 1.18% (Conyza bonariensis) to 67.96% (Tagetes patula). Coupling
human footprint with soil variability had the large contribution to the
potential distribution of IPS (mean PC = 32.43% in the model H+S;
Table 1). It had the least contribution to the potential distribution of
Bidens pilosa (10.92%) and the largest to that of T. patula (68.76%;
Table 1).

Significant differences were also observed in terms of niche breadth
among the four models (P < 0.001). The ratio of niche breadth be-
tween S and C was the largest, indicating that soil variability did not
severely alter the level of the potential distribution of IPS (Table 3;
Figs. 1 and 2). The ratio between H+S and C was the smallest, espe-
cially in Deserts and Xeric Shrublands, and Flooded Grasslands and
Savannas (Table 3; Figs. 1 and 2). We found that soil variability coupled
with human footprint could increase the potential distribution

Fig. 2. Potential distribution probabilities of the
29 IPS based on the model C (a), H (b), S (d) and
H+S (f), and changes between the model C and
the other three models (c, e, g). Areas with red
color in c, e and g stand for an increase in po-
tential distributions compared to the model C.
(For interpretation of the references to colour in
this figure legend, the reader is referred to the
web version of this article.)
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probabilities of some IPS, for example, Euphorbia hirta in Deserts and
Xeric Shrublands, Amaranthus spinosus in Flooded Grasslands and Sa-
vannas, Amaranthus tricolor in Montane Grasslands and Shrublands,
Indigofera suffruticosa in Temperate Conifer Forests, and Solanum acu-
leatissimum in Temperate Grasslands, Savannas and Shrublands
(Table 4).

There were also significant differences in the similarity of predic-
tions of potential distribution probabilities between C and the other
three models in each biome based on the 29 IPS (P < 0.001). The
potential distribution probability was most similar between S and C
(0.930 ± 0.025) and least similar between H+S and C
(0.745 ± 0.079; Table 3; Figs. 1 and 2). The largest gap between C and
the other three models was found in both Deserts and Xeric Shrublands
and Montane Grasslands and Shrublands, and the smallest gap was in
Tropical and Subtropical Moist Broadleaf Forests (Table 3; Figs. 1 and
2). Specifically, the species with the largest gap between C and H+S
include Oxalis corymbosa in Deserts and Xeric Shrublands, T. patula in
both Flooded Grasslands and Savannas and Temperate Grasslands, Sa-
vannas and Shrublands, I. suffruticosa in Montane Grasslands and
Shrublands, Jatropha curcas in Temperate Broadleaf and Mixed Forests,
Abutilon theophrasti in Temperate Conifer Forests, and Eryngium foe-
tidum in Tropical and Subtropical Moist Broadleaf Forests (Table 4).

4. Discussion

We observed significant differences in the impacts of human foot-
print and soil variability on the potential distribution of IPS between
various biomes. Furthermore, our results indicated that the contribu-
tion extents of human footprint and soil factors to the potential

distribution could vary across different IPS and biomes (Table 1) be-
cause the eco-physiological and abiotic environmental requirements of
IPS are different (Foxcroft et al., 2010; Xu and Qiang, 2011; Beans et al.,
2012; Donoghue and Edwards, 2014; Gallardo et al., 2014). Specifi-
cally, the potential distribution of many IPS were better predicted by
climatic variables coupling with human footprint and soil factors than
climatic factors only (Table 2). Human footprint and soil variability
increased the potential distribution probabilities of some IPS in the
biomes, particularly in Montane Grasslands and Shrublands (Tables 3
and 4).

Although overall human footprint was important to the potential
distribution of IPS, it had a large impact on some IPS, including T.
patula, A. theophrasti and Cannabis sativa (Table 1). Furthermore, in-
cluding human footprint as the SDM variable improved the perfor-
mance of modeling for some IPS such as Amaranthus viridis, E. robusta
and I. suffruticosa (Table 2). The regions with increasing potential dis-
tribution due to human footprint included southwestern China. In these
regions, economic conditions is not underdeveloped, but economic
growth rate is very fast (Naughton, 2006; www.stats.gov.cn). Economic
growth related human activities such as the trade, transportation and
agriculture may increase the invasion of IPS in southwestern China (Liu
et al., 2005; Xu and Qiang, 2011; Lotz and Allen, 2013; Donaldson
et al., 2014). Furthermore, human footprint is the main driving force for
the introduction of IPS into their non-native ranges (Xu and Qiang,
2011; Donaldson et al., 2014; Gallardo et al., 2014), and the original
purpose to introduce IPS are for ornamental use, forestry and dune
stabilization (Beans et al., 2012; Donaldson et al., 2014). We found that
human footprint may have a significant effect on the potential dis-
tribution of T. patula (Xu and Qiang, 2011; Beans et al., 2012). This

Table 1
Information of the 29 IPS and percentage contributions of human footprint and soil variability to Maxent modeling.

Species Family Occu. Train. Test PCC PCH PCS PCH+S

AUC AUC (%) (%) (%) (%)

Abutilon theophrasti Malvaceae 1603 0.92 0.92 89.84 53.45(42.42) 37.62(59.33) 56.20(40.47)
Amaranthus lividus Amaranthaceae 372 0.97 0.96 95.25 43.83(56.07) 40.19(59.38) 44.69(55.20)
Amaranthus paniculatus Amaranthaceae 112 0.98 0.95 94.84 39.40(57.55) 52.56(46.65) 51.51(47.51)
Amaranthus retroflexus Amaranthaceae 8700 0.80 0.79 91.31 34.11(65.52) 36.64(63.32) 35.66(63.98)
Amaranthus spinosus Amaranthaceae 1149 0.92 0.91 93.52 33.97(65.89) 55.39(43.66) 37.44(62.32)
Amaranthus tricolor Amaranthaceae 124 0.95 0.89 97.86 40.36(57.05) 57.63(41.00) 57.67(40.02)
Amaranthus viridis Amaranthaceae 1519 0.91 0.91 91.96 40.24(57.47) 29.35(66.91) 44.80(53.58)
Asclepias curassavica Asclepiadaceae 2863 0.89 0.89 95.06 13.87(85.69) 28.66(69.96) 21.02(78.65)
Avena fatua Gramineae 13018 0.75 0.74 93.94 32.39(67.41) 37.86(61.48) 33.61(66.23)
Bidens pilosa Compositae 4561 0.84 0.84 95.96 5.13(94.70) 28.60(71.35) 10.92(88.97)
Cannabis sativa Cannabinaceae 2493 0.90 0.90 95.97 54.37(45.51) 37.16(62.75) 58.21(41.70)
Cassia mimosoides Leguminosae 648 0.94 0.93 97.34 27.76(71.28) 31.26(68.18) 37.44(62.16)
Conyza bonariensis Compositae 5021 0.85 0.85 96.83 1.18(98.76) 41.24(58.70) 11.92(88.04)
Eryngium foetidum Umbelliferae 410 0.97 0.96 98.04 9.38(90.47) 23.74(75.04) 18.09(81.85)
Eucalyptus robusta Myrtaceae 743 0.97 0.97 84.43 10.61(82.08) 14.85(78.09) 11.36(81.29)
Euphorbia hirta Euphorbiaceae 2421 0.88 0.87 96.20 8.23(91.06) 27.38(71.10) 12.51(86.86)
Galinsoga parviflora Compositae 7052 0.82 0.82 98.88 34.21(65.66) 27.40(72.55) 34.48(65.47)
Hibiscus trionum Malvaceae 1937 0.90 0.89 97.86 7.33(92.27) 60.36(38.30) 21.90(77.95)
Indigofera suffruticosa Leguminosae 1131 0.93 0.93 96.91 18.27(81.36) 22.50(77.34) 19.64(80.09)
Jatropha curcas Euphorbiaceae 582 0.94 0.94 97.37 18.88(80.90) 23.51(75.28) 23.78(76.04)
Mirabilis jalapa Nyctaginaceae 1104 0.94 0.92 98.35 51.15(48.26) 32.65(67.15) 52.8(46.99)
Oxalis corymbosa Oxalidaceae 293 0.98 0.97 99.74 32.85(66.95) 19.72(79.61) 34.76(65.07)
Physalis angulata Solanaceae 1676 0.88 0.88 89.86 4.67(85.10) 44.90(51.83) 13.34(76.88)
Ricinus communis Euphorbiaceae 2359 0.87 0.88 94.10 28.34(71.48) 20.48(77.67) 31.09(68.69)
Robinia pseudoacacia Leguminosae 13397 0.74 0.75 99.39 26.99(72.90) 21.09(78.90) 26.94(72.95)
Setaria palmifolia Gramineae 590 0.96 0.97 98.62 15.77(83.92) 25.35(73.38) 17.66(81.92)
Solanum aculeatissimum Solanaceae 335 0.96 0.96 97.62 9.46(86.18) 27.79(67.92) 12.44(84.05)
Tagetes patula Compositae 384 0.96 0.93 94.29 67.96(31.42) 32.39(66.49) 68.76(30.75)
Talinum paniculatum Portulacaceae 510 0.94 0.94 90.50 25.79(72.80) 50.36(49.31) 39.80(58.34)

Mean 2658.9 0.91 0.90 95.24 27.24(71.31) 34.09(64.57) 32.43(66.35)
SD 3518.7 0.06 0.06 3.45 17.05(16.77) 11.94(11.71) 16.42(16.09)

Occu. stands for number of occurrence records; PCC, PCS, PCH and PCS+H represent the percentage contribution of climatic variables, soil variability, human footprint and both soil
variability and human footprint to Maxent modeling, respectively. The values in the bracket represent the contribution of climatic variables to Maxent modeling in the presence of soil
variability and/or human footprint. I. suffruticosa and J. curcas are shrubs and all other species are herbs. Train. AUC represents training AUC.
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species was introduced to China from Mexico as an ornamental plant,
and is now distributed around the tropical and subtropical regions of
China (Xu and Qiang, 2011). The introduction method is related to
human social activities (Xu and Qiang, 2011). Hence, we could estab-
lish the ecological relationship between the social factors and the dis-
tributions of T. patula (Beans et al., 2012; Lotz and Allen, 2013). Here,
we suggested to integrate human footprint into SDM may represent the
effect of human activities on the potential distributions of IPS.

Each soil variable could not contribute greatly to the potential
distribution of IPS, and soil variability could not severely change the
level of the potential distribution of IPS. However, the sum of all soil
variables could affect the potential distribution of IPS at a large geo-
graphical scale (Table 1). Based on AUC and the jackknife method, soil
factors had a large contribution to the modeling of the potential dis-
tribution of IPS, and including soil variables improved the model pre-
diction for some IPS (Table 2). Previous studies have shown that IPS are
likely to expand more frequently in biomes with higher resources such

as tropical and sub-tropical grasslands and forests than in those with
limited resources such as deserts and rocks (Foxcroft et al., 2010;
Donoghue and Edwards, 2014; Joshi et al., 2015), and that IPS (e.g. E.
hirta in this study; Table 4) can adapt to neutral or alkaline soil pH but
not to prolonged drought and saturated soils (Ehrenfeld et al., 2001;
Jordan et al., 2008; Martin et al., 2009). In forests, there is evidence of
positive associations between IPS invasions and soil fertility (Martin
et al., 2009). Hence, soil variables coupling with human footprint were
important predictors for the potential distribution of IPS (Van der
Putten et al., 2013; Zhang et al., 2014; Thalmann et al., 2015).

Impacts of human footprint and soil variability on the potential
distribution of IPS differed between biomes. We found that human
footprint and soil variability combined could improve the potential
distribution of some IPS such as T. patula both in Flooded Grasslands
and Savannas and in Temperate Grasslands, Savannas (Figs. 1 and 2;
Table 4). Furthermore, combining human footprint and soil variability
could also promote the discordant potential distribution of IPS to

Table 2
The training omission rate of the four models (C, H, S and H+S) for the 29 IPS based on the 11 common thresholds defaulted by Maxent.

Species Model C Model H Model S Model H+S

Abutilon theophrasti 0.088 ± 0.029 0.065 ± 0.048 0.087 ± 0.032 0.066 ± 0.047
Amaranthus lividus 0.072 ± 0.064 0.057 ± 0.029 0.070 ± 0.060 0.060 ± 0.032
Amaranthus paniculatus 0.057 ± 0.038 0.046 ± 0.043 0.069 ± 0.010 0.026 ± 0.030
Amaranthus retroflexus 0.101 ± 0.098 0.089 ± 0.099 0.101 ± 0.097 0.089 ± 0.098
Amaranthus spinosus 0.045 ± 0.054 0.065 ± 0.052 0.044 ± 0.052 0.068 ± 0.051
Amaranthus tricolor 0.051 ± 0.063 0.066 ± 0.052 0.104 ± 0.013 0.044 ± 0.037
Amaranthus viridis 0.148 ± 0.073 0.078 ± 0.063 0.153 ± 0.077 0.079 ± 0.068
Asclepias curassavica 0.095 ± 0.039 0.074 ± 0.062 0.093 ± 0.035 0.072 ± 0.056
Avena fatua 0.121 ± 0.113 0.107 ± 0.116 0.119 ± 0.113 0.104 ± 0.116
Bidens pilosa 0.123 ± 0.057 0.101 ± 0.077 0.066 ± 0.089 0.096 ± 0.075
Cannabis sativa 0.074 ± 0.058 0.075 ± 0.055 0.071 ± 0.056 0.077 ± 0.055
Cassia mimosoides 0.097 ± 0.007 0.061 ± 0.050 0.096 ± 0.006 0.053 ± 0.043
Conyza bonariensis 0.067 ± 0.093 0.090 ± 0.076 0.067 ± 0.092 0.087 ± 0.075
Eryngium foetidum 0.073 ± 0.011 0.042 ± 0.035 0.038 ± 0.039 0.041 ± 0.030
Eucalyptus robusta 0.126 ± 0.065 0.056 ± 0.030 0.125 ± 0.064 0.052 ± 0.027
Euphorbia hirta 0.131 ± 0.066 0.087 ± 0.067 0.132 ± 0.067 0.086 ± 0.070
Galinsoga parviflora 0.097 ± 0.084 0.091 ± 0.088 0.097 ± 0.084 0.091 ± 0.088
Hibiscus trionum 0.069 ± 0.048 0.073 ± 0.061 0.064 ± 0.048 0.066 ± 0.058
Indigofera suffruticosa 0.104 ± 0.010 0.059 ± 0.048 0.033 ± 0.050 0.055 ± 0.047
Jatropha curcas 0.096 ± 0.033 0.065 ± 0.043 0.021 ± 0.043 0.068 ± 0.046
Mirabilis jalapa 0.036 ± 0.054 0.066 ± 0.046 0.025 ± 0.046 0.060 ± 0.042
Oxalis corymbosa 0.051 ± 0.071 0.034 ± 0.027 0.127 ± 0.064 0.033 ± 0.026
Physalis angulata 0.105 ± 0.056 0.079 ± 0.073 0.033 ± 0.064 0.077 ± 0.068
Ricinus communis 0.119 ± 0.065 0.103 ± 0.078 0.119 ± 0.064 0.099 ± 0.074
Robinia pseudoacacia 0.106 ± 0.118 0.108 ± 0.118 0.098 ± 0.121 0.107 ± 0.119
Setaria palmifolia 0.091 ± 0.025 0.059 ± 0.037 0.062 ± 0.053 0.058 ± 0.038
Solanum aculeatissimum 0.056 ± 0.034 0.061 ± 0.046 0.053 ± 0.031 0.058 ± 0.039
Tagetes patula 0.081 ± 0.013 0.064 ± 0.037 0.052 ± 0.043 0.053 ± 0.034
Talinum paniculatum 0.058 ± 0.048 0.073 ± 0.042 0.088 ± 0.015 0.061 ± 0.037

Mean ± SD 0.088 ± 0.028 0.072 ± 0.019 0.069 ± 0.020 0.080 ± 0.034

Values are mean ± SD across the 11 common thresholds defaulted by Maxent.

Table 3
Ratio of niche breadth and similarity of predictions of potential distribution probabilities between the model C and the other three models (i.e. H, S and H+S) for all 29 IPS in the seven
biomes.

Biome Ratio of niche breadth Similarity of potential distribution probabilities

Model H Model S Model H+S Model H Model S Model H+S

Deserts and Xeric Shrublands 0.609 ± 0.274 0.853 ± 0.169 0.455 ± 0.243 0.705 ± 0.098 0.883 ± 0.086 0.624 ± 0.140
Flooded Grasslands and Savannas 0.539 ± 0.223 0.983 ± 0.065 0.514 ± 0.213 0.718 ± 0.110 0.929 ± 0.032 0.695 ± 0.098
Montane Grasslands and Shrublands 0.767 ± 0.275 0.988 ± 0.199 0.729 ± 0.356 0.679 ± 0.088 0.919 ± 0.040 0.670 ± 0.087
Temperate Broadleaf and Mixed Forests 0.728 ± 0.159 0.995 ± 0.019 0.712 ± 0.156 0.815 ± 0.065 0.953 ± 0.024 0.800 ± 0.065
Temperate Conifer Forests 0.799 ± 0.185 0.998 ± 0.043 0.780 ± 0.171 0.799 ± 0.056 0.955 ± 0.024 0.790 ± 0.058
Temperate Grasslands, Savannas and Shrublands 0.767 ± 0.224 0.975 ± 0.051 0.732 ± 0.218 0.789 ± 0.103 0.913 ± 0.035 0.770 ± 0.090
Tropical and Subtropical Moist Broadleaf Forests 0.893 ± 0.082 0.989 ± 0.009 0.871 ± 0.085 0.888 ± 0.059 0.958 ± 0.017 0.868 ± 0.059

Mean ± SD 0.729 ± 0.110 0.969 ± 0.048 0.685 ± 0.137 0.770 ± 0.068 0.930 ± 0.025 0.745 ± 0.079

For each biome, values are mean ± SD across the 29 IPS.
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climatic conditions, but such an effect was limited only to some biomes
such as Deserts and Xeric Shrublands, Flooded Grasslands and Savannas
and Montane Grasslands and Shrublands. These impacts may be mainly
due to the role of human footprint and soil variability in modifying
habitat conditions and seed propagation strategies of IPS (Beans et al.,
2012; Gallardo et al., 2014).

Human footprint is associated with human activities (e.g. transport
services and land use) and human population density (Beans et al.,
2012; Gallardo et al., 2014), and high population density commonly
results in intensive human activities (Cincotta et al., 2000; Gallardo
et al., 2014). Intensive human activities can provide enough agents (Xu
and Qiang, 2011; Donaldson et al., 2014; Ray et al., 2016) and create
suitable microclimatic and soil conditions for IPS to invade (Donoghue
and Edwards, 2014). For example, T. patula is an alien plant with the
capacity to adapt to wide environmental conditions in China (Xu and
Qiang, 2011). With the introduction pathways by human activities, T.
patula has a large potential to grow and survive in suitable microcli-
matic conditions of Flooded Grasslands and Savannas in China
(Table 4). Studies have shown that some IPS are difficult to expand in
Montane Grasslands and Shrublands due to poor climatic and soil
conditions (Le Maitre et al., 2002; Donoghue and Edwards, 2014).
However, our results suggest that human footprint could result in an
increase in the potential distribution of IPS in this biome in China likely
due to human activity mediated increases in IPS agents and improve-
ment in microclimatic and soil conditions. On the other hand, the po-
tential distribution of IPS decreased in Deserts and Xeric Shrublands in
China. This may be due to little human activities and poor soil condi-
tions in this biome. Thus, human footprint plays little role in promoting
the expansion of IPS in these unsuitable soil habitats (Harris, 2014).

Our results suggest that there is a need to integrate human footprint

and soil variability into the assessment of the potential distribution of
IPS in different biomes. Such an integration will be more helpful in
coming up with strategies to prevent and control risks of plant invasion.
We also suggest to use human footprint and soil factors as the predictor
variables for improving the performance of SDM (Tables 1 and 2). SDM
using climatic variables may over-estimate the potential distributions of
IPS (Table 3). To address the practical issues, we need to control the
introduction of IPS and design long-term management plans to monitor
the potential distribution of IPS based on human footprint, particularly
in more vulnerable biomes in China. However, since our study was
limited by the amount of data for ecological validation, more studies
are needed for verification, including field investigations, ecological
monitoring and the precision trainings and validations of SDMs. For
example, further evaluation metrics are required to show the robustness
of the models because it has been demonstrated that the issue of high
AUC value is not addressed in SDMs. With the accelerating process of
economic globalization and rapid climate change, the risk evaluation of
universal coverage for IPS also is urgently required.
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Table 4
Ratio of niche breadth and similarity of predictions of potential distribution probabilities between the models C and H+S for each IPS in the seven biomes.

Species Ratio of niche breadth Similarity of potential distribution probabilities

DXS FGS MGS TBMF TCF TGSS TSMBF DXS FGS MGS TBMF TCF TGSS TSMBF

Abutilon theophrasti 0.467 0.443 0.380 0.796 0.417 0.670 0.827 0.656 0.706 0.623 0.838 0.649 0.763 0.841
Amaranthus lividus 0.272 0.772 0.850 0.916 0.694 0.910 0.878 0.490 0.773 0.676 0.843 0.756 0.738 0.867
Amaranthus paniculatus 0.241 0.600 0.890 0.865 0.766 0.862 0.847 0.475 0.753 0.648 0.866 0.746 0.731 0.832
Amaranthus retroflexus 0.710 0.914 0.643 0.909 0.734 0.816 0.833 0.760 0.905 0.788 0.902 0.791 0.874 0.868
Amaranthus spinosus 0.342 1.101 0.646 0.763 0.527 0.871 0.903 0.623 0.769 0.703 0.814 0.726 0.756 0.880
Amaranthus tricolor 0.197 0.659 1.230 0.942 1.247 0.459 0.964 0.347 0.695 0.699 0.844 0.768 0.684 0.929
Amaranthus viridis 0.595 0.391 0.673 0.674 0.611 0.840 0.865 0.683 0.658 0.509 0.785 0.766 0.807 0.865
Asclepias curassavica 0.438 0.418 0.746 0.522 0.741 0.940 0.808 0.652 0.767 0.615 0.762 0.806 0.844 0.843
Avena fatua 0.697 0.758 0.807 0.870 0.829 0.700 0.939 0.750 0.812 0.839 0.871 0.853 0.791 0.926
Bidens pilosa 0.921 0.385 0.741 0.698 0.855 0.963 0.975 0.888 0.613 0.641 0.806 0.892 0.813 0.934
Cannabis sativa 0.465 0.673 0.559 0.833 0.652 0.649 0.885 0.650 0.805 0.719 0.852 0.748 0.780 0.862
Cassia mimosoides 0.247 0.531 0.813 0.571 0.892 0.666 0.967 0.459 0.617 0.639 0.703 0.826 0.678 0.926
Conyza bonariensis 0.776 0.303 0.494 0.664 0.779 0.602 0.955 0.827 0.539 0.633 0.773 0.862 0.811 0.916
Eryngium foetidum 0.331 0.525 0.217 0.363 0.769 0.708 0.665 0.559 0.719 0.632 0.709 0.709 0.826 0.673
Eucalyptus robusta 0.279 0.590 0.549 0.661 0.566 0.385 0.808 0.558 0.744 0.553 0.745 0.679 0.660 0.824
Euphorbia hirta 1.156 0.368 0.448 0.731 0.808 0.888 0.930 0.737 0.559 0.685 0.792 0.836 0.886 0.905
Galinsoga parviflora 0.363 0.278 0.635 0.690 0.764 0.897 0.925 0.747 0.643 0.737 0.798 0.817 0.847 0.905
Hibiscus trionum 0.717 0.884 0.750 0.916 0.774 0.874 0.682 0.784 0.844 0.828 0.892 0.815 0.840 0.778
Indigofera suffruticosa 0.355 0.211 0.886 0.541 1.147 0.803 0.800 0.576 0.557 0.489 0.738 0.739 0.817 0.856
Jatropha curcas 0.449 0.455 0.456 0.334 0.884 0.673 0.737 0.647 0.736 0.702 0.668 0.814 0.791 0.806
Mirabilis jalapa 0.201 0.333 0.765 0.674 0.824 0.634 0.932 0.520 0.568 0.646 0.772 0.822 0.600 0.888
Oxalis corymbosa 0.153 0.323 0.334 0.556 0.610 0.180 0.817 0.329 0.571 0.537 0.681 0.716 0.570 0.829
Physalis angulata 0.308 0.555 0.943 0.819 0.742 1.079 0.922 0.629 0.756 0.733 0.876 0.839 0.868 0.906
Ricinus communis 0.706 0.419 0.720 0.747 0.715 0.785 0.942 0.799 0.702 0.782 0.839 0.833 0.826 0.906
Robinia pseudoacacia 0.635 0.478 0.633 0.871 0.764 0.743 0.916 0.745 0.720 0.766 0.894 0.836 0.825 0.918
Setaria palmifolia 0.376 0.525 0.376 0.736 0.708 0.716 0.961 0.590 0.748 0.704 0.828 0.831 0.775 0.925
Solanum aculeatissimum 0.426 0.509 2.220 0.653 0.939 1.127 0.934 0.696 0.736 0.554 0.799 0.872 0.852 0.909
Tagetes patula 0.171 0.188 0.692 0.557 0.772 0.224 0.736 0.423 0.492 0.673 0.702 0.790 0.527 0.758
Talinum paniculatum 0.212 0.325 1.049 0.786 1.094 0.564 0.919 0.484 0.646 0.681 0.819 0.765 0.739 0.888

Mean 0.455 0.514 0.729 0.712 0.780 0.732 0.871 0.624 0.695 0.670 0.800 0.790 0.770 0.868
SD 0.243 0.213 0.356 0.156 0.171 0.218 0.085 0.140 0.098 0.087 0.065 0.058 0.090 0.059

DXS: Deserts and Xeric Shrublands; FGS: Flooded Grasslands and Savannas; MGS: Montane Grasslands and Shrublands; TBMF: Temperate Broadleaf and Mixed Forests; TCF: Temperate
Conifer Forests; TGSS: Temperate Grasslands, Savannas and Shrublands; TSMBF: Tropical and Subtropical Moist Broadleaf Forests.
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