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Abstract: To understand the mechanisms driving community succession in the secondary forest sur—
rounding Qiandao Lake Zhejiang China we investigated seasonal dynamics of the diurnal varia—
tions of net photosynthetic rates their responses to both light and CO, and chlorophyll fluorescence
parameters of four dominant plant species i. e. Pinus massoniana Castanopsis sclerophylla  Lith—
ocarpus glaber and Cyclobalanopsis glauca in three natural light habitats i.e. gap edge and un-
derstory. In the three different light regimes the daily mean values of the net photosynthetic rate
(P,) of P. massoniana and C. sclerophylla were significantly higher in summer than in the other
seasons while P, of L. glaber and C. glauca was significantly higher in autumn than in the other
seasons. In the forest gap and edge habitats the annual mean values of the maximum net photosyn—
thetic rate (A,,) the light saturation point ( LSP) light compensation point ( LCP) and dark res—
piration rate ( R,) of P. massoniana were the highest followed by C. sclerophylla and those of L.
glaber and C. glauca were the lowest. In the understory habitat the annual mean values of A, and
the apparent quantum yield ( AQY) of C. glauca were the highest followed by L. glaber and C.
sclerophylla  and those of P. massoniana were the lowest. The annual mean values of the maximum
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rate ( TPU) of P. massoniana were significantly higher than those of the other three plant species in
the three different light regimes. During the four seasons the photochemical maximum efficiency of
PSII ( F,/F,) of P. massoniana and C. sclerophylla in the forest gap habitat was significantly high—
er while those of L. glaber and C. glauca in the understory habitat were significantly higher than
in the other light regimes. The maximum values of F, /F  of P. massoniana and C. sclerophylla
were the highest in summer and those of L. glaber and C. glauca were the highest in autumn. It
suggested that P. massoniana and C. sclerophylla were more suitable for habitats with high light in—
tensities such as forest gaps and L. glaber and C. glauca were more suitable for habitats with low
light intensities such as the understory. During ecological succession P. massontana and C. sclero—
phylla would withdraw from the community with the increasing canopy density and L. glaber and
C. glauca would be the dominant species in the climax community.
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Table 1 Ecological factors in different light regimes in the secondary forest in the area of Qiandao Lake

Environmental variable Habitat Winter Spring Summer Autumn

I 320 +4Aa 704 +5Ba 1160 £ 12Ca 438 £3Da
PAR I 169 +2Ab 436 +4Bb 450 +15Bb 182 +2Chb
(pmol * m=2 +s71) I} 30 +1Ac 59 +9Bc 106 +7Ce 38 +1Ac

I 13.64 £0.02Aa 33.35 +£0.10Ba 37.74 £0.05Ca 19.50 £0.13Da
Air temperature I 13.12 £0.00Aa 32.96 £0.02Ba 36.37 £0.05Ca 19.13 £0.09Da
(C) I 13.06 £0.02Aa 27.32 +£0.06Bb 34.03 £0.07Cb 18.78 £0.07Da

I 33.12 £0.12Aa 36.65 £0.05Ba 44.47 £0.22Ca 38.77 £0.53Ba
Relative humidity I 34.91 £0.12Aa 53.83 £0.33Bb 52.05 +£0.34Bb 41.74 £0.01Cb

(%)

I

43.22 +0.07Ab

55.56 =0.17Bb

57.40 £0.17Bc

45.46 +0.07Ac

I: Canopy gap; 1I:

ent capital letters indicated significant difference among seasons at 0. 05 level.

Forest edge; II:

(P <0.05) Different small letters indicated significant difference among habitats and differ—

Understory.

The same below.

Data were daily mean values in the table.
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Table 2 Seasonal changes in daily mean value of net photosynthetic rate of the dominant species in different light regimes

Species Habitat Winter Spring Summer Autumn
I 3.11 £0.23Aa 3.82+0.26Ba 9.46 £0.53Ca 6.81 £0.52Da
P. massoniana | 1.77 £0.26Ab 2.40 +0.10Bb 6.33 £0.56Cb 3.18 £0.34Db
I 0.47 £0.05Ac 0.52 +0.20Ac 1.03 £0.12Bc 0.76 £0.09Cc
I 3.53 £0.38Aa 4.40 £0.35Ba 9.65 +0.60Ca 4.79 £0.23Ba
C. sclerophylla | 1.80 £0.12Ab 2.24 +0.15Bb 4.36 +0.28Cb 3.33 £0.26Db
It 0.35 +0.08Ac 0.67 =0.14Bc 1.06 £0.10Cc 0.82 +0.09Bc
I 1.72 £0.09ABa 1.61 0.13Aa 2.49 £0.29BCa 7.27 +0.86Da
L. glabra | 1.60 £0.09Ab 1.11 £0.08Bb 1.87 £0.15Ab 6.34 £0.46Cb
I 0.60 =0.07Ac 0.50 =0.09Ac 1.18 £0.09Bc 1.41 £0.19Cc
I 4.26 £0.28Aa 0.80 +0.12Ba 5.24 +0.60Ca 7.48 £0.56Da
C. glauca I 1.08 £0.12Ab 0.72 £0.09Ab 4.13 £0.26Bb 6.91 £0.67Cb
I 0.81 £0.09Ac 0.47 £0.07Bc 1.25 £0.09Cc 1.57 £0.12Dc
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Table 3 Annual mean of parameters of light response curve of dominant species in different light regimes
Species
Photosynthetic Habitat
parameter P. massoniana C. sclerophylla L. glabra C. glauca
I 1372 +40Aa 1282 £37Aa 852 +25Ba 688 +20Ca
LSP I 855 £25Ab 722 +21Bb 644 +19Cb 454 +13Db
(pmol * m=2 «s71) m 515 +15Ac 472 +14Bc 374 £11Cc 294 +8Dc
I 18.75 £0.55Aa 13.00 £0.39Ba 10.88 +£0.32Ca 9.75 £0.29Ca
LCP I 12.75 £0.38Ab 9.75 £0.29Bb 7.25 +£0.20Ch 6.00 £0.17Db
(p,rnol’m’2 +s7h) | 7.99 £0.21Ac 6.00 £0.17Bc¢ 5.00 £0.14Cc 5.00 £0.14Cc
I 17.40 £0.50Aa 12.96 £0.37Ba 11.39 £0.33Ca 8.93 £0.26Da
max Il 10.81 £0.31Ab 10.57 £0.31Ab 7.57 £0.22Bb 7.52 £0.22Bb
(pmol * m=2 +s71") I 5.63 £0.16Ac 6.03 £0.17ABc 6.45 +£0.19Bc 7.12 £0.21Cb
I 2.67 £0.08Aa 1.56 £0.05Ba 0.90 £0.03Ca 0.59 £0.02Da
R, I 2.47 £0.07Aa 1.43 £0.04Bab 0.81 £0.02Ch 0.51 £0.01Db
(pmol * m=2 571 I 2.19 £0.06Ab 1.34 £0.04Bb 0.63 £0.02Cc 0.37 £0.01Dc¢
I 0.028 £0.001Aa 0.043 £0.001Ba 0.048 £0.001Ca 0.052 £0.002Da
AQY I 0.039 +0.001Ab 0.070 +0.002Bb 0.078 +0.002Ch 0.091 +£0.003Db
(mol * mol ") 1 0.050 £0.001Ac 0.084 +0.002Bc 0.103 £0.003Cc 0.113 £0.003Dc
4 ( AQY) ‘]mux 3 ;
N 3
3 AQY: > >
> . TPU 3
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Table 4 Annual mean of parameters of CO, response curve of dominant species in different light regimes
Species
Photosynthetic Habitat
parameter P. massoniana C. sclerophylla L. glabra C. glauca
1 85.84 £2.48Aa 46.17 +1.33Ba 40.72 +1.23Ca 39.92 £1.15Ca
¢ max I} 75.70 £2.19Ab 40.00 1. 15Bb 32.34 £0.93Cb 28.68 +0.83Ch
( pmol * m72e s’l) il| 54.15 £1.56Ac 31.16 £0.90Bc¢ 22.99 £0.66Cc 19.54 £0.56Dc
I 164.21 +8.21Aa 78.33 £3.92Ba 78.03 £3.90Ba 73.94 £3.70Ba
Jinax I 137.16 +6.86Ab 69.99 +3.50Bb 56.21 £2.81Cb 50.37 £2.52Chb
(pmol * m=2 «s71) m 94.34 +4.72Ac 56.55 +2.83Bc 42.29 +2.11Cc 36.95 +1.85Cc
I 13.92 £0.40Aa 8.25 +0.24Ba 7.96 +£0.23Ba 5.87 £0.17Ca
TPU I 10.20 £0.29Ab 7.22 £0.21Bb 5.32£0.15Cb 4.47 £0.13Db
(pmol * m=2 +s°") I} 7.21 £0.21Ac 6.07 £0.18Bc 4.34 +£0.13Cc 3.29 £0.09Dc
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5 F /F,
Table 5 Seasonal changes in F /F  of dominant species in different light regimes

Species Habitat Winter Spring Summer Autumn
I 0.733 £0.014Aa 0.804 +0.002Ba 0.825 +0.002Ca 0.805 +0.003Ba
P. massoniana I 0.676 +0.004Ab 0.784 +0.002Bb 0.815 +0.002Ch 0.777 £0.007Bb
I 0.527 £0.003Ac 0.712 +£0.008Bc 0.748 £0.004Cc 0.705 £0.001Be
I 0.643 £0.009Aa 0.786 +0.002Ba 0.814 +0.002Ca 0.794 +£0.003Ba
C. sclerophylla I 0.610 +£0.004Ab 0.757 +0.003Bb 0.795 +0.004Ch 0.758 +0.009Bb
! 0.586 +£0.004Ac 0.695 +0.008Bc 0.777 £0.003Cc 0.714 £0.002Dc
I 0.482 £0.005Aa 0.765 +£0.002Ba 0.774 £0.002Ba 0.790 £0.001Ca
L. glabra I 0.581 +£0.007Ab 0.785 +0.002Bb 0.786 +0.003Bb 0.813 +£0.002Ch
I 0.707 £0.012Ac 0.802 +0.001Bc 0.812 £0.001Bc 0.838 £0.002Cc
| 0.588 £0.005Aa 0.744 +0.002Ba 0.756 £0.002Ca 0.782 £0.002Da
C. glauca I 0.705 +£0.001Ab 0.766 +0.002Bb 0.795 +0.003Ch 0.806 +£0.001Db
I} 0.780 +0.010Ac 0.807 +0.001Bc 0.815 +0.002Bc 0.856 +0.012Cc
. F/
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